Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our three-dimensional, time-dependent, multi-fluid model has been used to investigate the solar wind (SW)–local interstellar medium (LISM) interaction with pickup ions (PUIs) treated as a separate fluid. A non-zero, but fixed, angle between the Sun’s magnetic and rotation axis is adopted. The flow of the plasma mixture (thermal SW protons, PUIs, and electrons), is described by the system of ideal magnetohydrodynamic equations with the source terms responsible for charge exchange between ions and neutral atoms. Different populations of neutral atoms are governed by the individual sets of the Euler equations. As the standard Rankine–Hugoniot relations are not appropriate to describe the anisotropic behavior of PUIs at the termination shock, we use a kinetically-derived set of boundary conditions at it. We extend our previous work [1] and perform these new simulations on a Cartesian grid. This approach allows us to maintain a uniform grid resolution in all directions, without compromising resolution, at large distances from the Sun. The possibility of transition of the SW flow to a stochastic regime in the region between the termination shock and heliopause is further investigated.more » « less
-
The role of pickup ions (PUIs) in the solar wind interaction with the local interstellar medium is investigated with 3D, multifluid simulations. The flow of the mixture of all charged particles is described by the ideal MHD equations, with the source terms responsible for charge exchange between ions and neutral atoms. The thermodynamically distinct populations of neutrals are governed by individual sets of gas dynamics Euler equations. PUIs are treated as a separate, comoving fluid. Because the anisotropic behavior of PUIs at the heliospheric termination shocks is not described by the standard conservation laws (a.k.a. the Rankine–Hugoniot relations), we derived boundary conditions for them, which are obtained from the dedicated kinetic simulations of collisionless shocks. It is demonstrated that this approach to treating PUIs makes the computation results more consistent with observational data. In particular, the PUI pressure in the inner heliosheath (IHS) becomes higher by ∼40%–50% in the new model, as compared with the solutions where no special boundary conditions are applied. Hotter PUIs eventually lead to charge-exchange-driven cooling of the IHS plasma, which reduces the IHS width by ∼15% (∼8–10 au) in the upwind direction, and even more in the other directions. The density of secondary neutral atoms born in the IHS decreases by ∼30%, while their temperature increases by ∼60%. Simulation results are validated with New Horizons data at distances between 11 and 47 au.more » « less
-
Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs’ mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon’s Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to $$\sim47~\text{au}$$ ∼ 47 au from the Sun or halfway to the heliospheric termination shock.more » « less
-
Abstract Large-scale disturbances generated by the Sun’s dynamics first propagate through the heliosphere, influence the heliosphere’s outer boundaries, and then traverse and modify the very local interstellar medium (VLISM). The existence of shocks in the VLISM was initially suggested by Voyager observations of the 2-3 kHz radio emissions in the heliosphere. A couple of decades later, both Voyagers crossed the definitive edge of our heliosphere and became the first ever spacecraft to sample interstellar space. Since Voyager 1’s entrance into the VLISM, it sampled electron plasma oscillation events that indirectly measure the medium’s density, increasing as it moves further away from the heliopause. Some of the observed electron oscillation events in the VLISM were associated with the local heliospheric shock waves. The observed VLISM shocks were very different than heliospheric shocks. They were very weak and broad, and the usual dissipation via wave-particle interactions could not explain their structure. Estimates of the dissipation associated with the collisionality show that collisions can determine the VLISM shock structure. According to theory and models, the existence of a bow shock or wave in front of our heliosphere is still an open question as there are no direct observations yet. This paper reviews the outstanding observations recently made by the Voyager 1 and 2 spacecraft, and our current understanding of the properties of shocks/waves in the VLISM. We present some of the most exciting open questions related to the VLISM and shock waves that should be addressed in the future.more » « less
An official website of the United States government
